ANALYSIS BASED ON DATA FROM HOUSEHOLDS. 2 OUT OF 2 DISTRICTS
Data has not been presented where sample size was insufficient.
School enrollment and out of school children

Table 1: \% Children in different types of schools 2013					
Age group	Govt.	Pvt.	Other	Not in school	Total
Age: 6-14 ALL	44.7	54.3	0.4	0.6	100
Age: 7-16 ALL	47.6	50.4	0.8	1.2	100
Age: 7-10 ALL	38.7	60.3	0.6	0.4	100
Age: 7-10 BOYS	33.5	65.5	0.9	0.0	100
Age: 7-10 GIRLS	42.8	56.2	0.3	0.7	100
Age: 11-14 ALL	51.6	47.3	0.3	0.8	100
Age: 11-14 BOYS	42.6	55.4	0.6	1.4	100
Age: 11-14 GIRLS	60.6	39.0	0.0	0.3	100
Age: 15-16 ALL	57.7	36.4	2.3	3.7	100
Age: 15-16 BOYS	48.0	43.1	3.9	5.1	100
Age: 15-16 GIRLS	70.8	27.4	0.0	1.8	100

Note: 'Other' includes children going to madarsa and EGS.
'Not in school' = dropped out + never enrolled.

Chart 1: Trends over time
\% Children out of school by age group and gender 2006-2013

How to read this chart: Each line shows trends in the proportion of children out of school for a particular subset of children. For example, the proportion of girls (age 11-14) not in school was 0.6% in 2006, 0.2% in $2010,0.8 \%$ in 2012 and is 0.3% in 2013.

Table 2: Sample description \% Children in each class by age 2013												
Std	5	6	7	8	9	10	11	12	13	14	1516	Total
I	46.7	43.4	8.5	1.5								100
II	0.6	23.4	64.1	10.1	1.9							100
III		. 8	22.9	64.0	12.4	0.0						100
IV	0.7			35.4	50.5	12.8	0.7					100
V	2.5				5.5	70.4	19.2	2.5				100
VI	2.6					16.0	56.9	20.7	3.9			100
VII	2.2						13.0	61.0	19.5	4.3		100
VIII	0.0							15.6	71.8	11.9	0.7	100

How to read this table: If a child started school in Std I at age 6, she should be of age 8 in Std III. This table shows the age distribution for each class. For example, in Std III, 64% children are 8 years old but there are also 22.9% who are $7,12.4 \%$ who are 9 and none who are older.

Type of school and paid additional tuition classes (tutoring)

The ASER survey recorded information about paid additional private tutoring by asking the following question: "Does the child take any paid tuition class currently?" Therefore the numbers given below do not include any unpaid supplemental help in learning that the child may have received.

Table 3: Trends over time \% Children attending PAID TUITION CLASSES by school type 2010-2013 \% Children attending paid tuition classes in Std I-V
2010
Pvt. schools

Table 4: Trends over time
\% Children by school type and TUITION 2010-2013
:---

Puducherry fubal

Data has not been presented where sample size was insufficient.
Reading and Arithmetic

Table 5: \% Children by class and READING level All schools 2013

Std	Not even letter	Letter	Word	Level 1 (Std I Text)	Level 2 (Std II Text)	Total
I	36.8	52.0	8.2	3.1	0.0	100
II	22.3	31.1	36.2	6.5	4.0	100
III	13.2	23.3	38.0	15.6	9.8	100
IV	3.0	8.6	22.5	42.7	23.2	100
V	7.0	14.0	17.3	29.8	31.9	100
VI	2.6	10.8	13.7	30.1	42.8	100
VII	0.8	1.8	11.2	35.2	50.9	100
VIII	0.7	5.6	6.3	30.2	57.2	100
Total	11.3	19.1	19.4	23.5	26.7	100

How to read this table: Each cell shows the highest level in reading achieved by a child. For example, in Std III, 13.2% children cannot even read letters, 23.3% can read letters but not more, 38% can read words but not Std I text or higher, 15.6% can read Std I text but not Std II text, and 9.8% can read Std II text. For each class, the total of all these exclusive categories is 100%.

Chart 2: Trends over time
\% Children who can READ Std II level text by class
All schools 2009, 2011 and 2013

Chart 3: Trends over time
\% Children who can do DIVISION by class
All schools 2009, 2011 and 2013

Table 6: \% Children by class and ARITHMETIC level
All schools 2013

| Std | Not even
 $1-9$ | Recognize numbers | | Can
 subtract | Can
 divide | Total |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| I | 22.0 | 38.8 | 37.7 | 1.6 | 0.0 | 100 |
| III | 6.0 | 22.7 | 68.6 | 2.7 | 0.0 | 100 |
| III | 7.7 | 9.5 | 63.4 | 19.4 | 0.0 | 100 |
| IV | 1.6 | 7.7 | 39.0 | 45.2 | 6.5 | 100 |
| V | 4.0 | 11.8 | 33.8 | 26.8 | 23.6 | 100 |
| VII | 1.4 | 9.2 | 27.1 | 32.2 | 30.1 | 100 |
| VII | 0.0 | 3.7 | 29.0 | 36.8 | 30.6 | 100 |
| VIII | 0.7 | 3.4 | 23.4 | 27.8 | 44.7 | 100 |
| Total | 5.6 | 14.0 | 40.7 | 23.3 | 16.5 | 100 |

How to read this table: Each cell shows the highest level in arithmetic achieved by a child. For example, in Std III, 7.7\% children cannot even recognize numbers 1-9, 9.5\% can recognize numbers up to 9 but not more, 63.4% can recognize numbers up to 99 but cannot do subtraction, 19.4% can do subtraction but cannot do division, and 0% can do division. For each class, the total of all these exclusive categories is 100%.

To interpret the chart alongside (Chart 2), several things need to be kept in mind:

The highest level in the ASER reading tool is the ability to read a Std II level text. ASER is a "floor" level test. All children (age 5 to 16) are assessed using the same tool; grade-level tools are not used in ASER.

We can see that the proportion of children who can read at least Std II level text increases in successive standards. This is true for every year for which data is shown.

By Std VIII, when children have completed eight years of schooling, a high proportion of children are able to read the Std II level text. It is possible that many children in Std VIII are reading at higher levels, but ASER reading tests do not assess higher than Std II level.

This chart allows us to compare proportions of children reading at least Std II level texts in different standards across years. For example, see Std V in 2009, 2011 and 2013.

To interpret the chart alongside (Chart 3), several things need to be kept in mind:

The highest level in the ASER arithmetic tool is the ability to do a numerical division problem (dividing a three digit number by a one digit number). In most states in India, children are expected to do such computations by Std III or Std IV. ASER does not assess children using grade-level tools.

We can see that the proportion of children who can do this level of division increases in successive standards. This is true for every year for which data is shown.

By Std VIII, when children have completed eight years of schooling, a substantial proportion of children are able to do division problems at this level. It is possible that some children are able to do operations at higher levels too, but ASER arithmetic tests do not assess higher than this level.

This chart allows us to compare proportions of children who can do division in different standards across years. For example, see Std V in 2009, 2011 and 2013.

